ソラマメ属植物の核型分析 [

近藤 昭 一郎

Syoichiro Kondo: Karyotype Analysis in Vicia.

ソラマメ属 Vicia はマメ科に属し、広く世界に分布する大きな属である。大井(1953)は日本産本属植物として14種2変種を記載している。本属の染色体については坂村(1916)をはじめ、多くの研究者によって報告されているが、その殆んどが染色体数の研究にとどまり、核型についての研究は少い。日本産本属植物については酒井(1951)の報告があるが、パラフィン法によるもので、染色体が小さく、それらの核型については、あまり明確ではないので筆者は本属植物3

種、1変種、1品種について核型分析を行つたので報告する。

材料および方法

核型の観察は根端細胞において行い、8-0xyquinoline で前処理し、醋酸オルセインおしつぶし法(Tjio & Levan, 1950)によつた。染色体の腕の長さは接眼ミクロメーターによつて測定し、着糸点の位置を定め、図は Abbé 描画装置を用いて転写した。核型の表わし方は篠遠(1943)によつた。材料として用いた植物は Table 1の通りである。

Table 1. 材料植物の産地と染色体数

植	物	名	2 n	産 地
Vicia tetrasperma SCHI	REB.	カスマグサ	14	神戸市垂水区神出町
V. hirsuta S. F. GRAY		スズメノエンドウ	14	三田市古城跡
V. Cracca L.		クサフジ	14	神戸市垂水区神出町
V. angustifolia L. var.	segelalis KOCH	カラスノエンドウ	12	神戸市垂水区神出町
V. Faba L. forma anac	earpa MAKINO	ソラマメ	12	栽 培

吉 身

1. カスマグサ Vicia tetrasperma 2n = 14

(Figs. 1,6; Table 2)

体細胞染色体は14個あり、7種類に区別できる。染色体の大きさは最大 6μ ,最小 4μ で、大きいものと小さいものとの差があまり大きくない。染色体の着糸点は大きいもの4対(1,2;3,4;5,6;7,8)が submedianにあり、次の1対(9,10)は medianにあり、残りの2対(11,12;13,14)は subterminal にある。そしてこれらの中、5,6:7,8 の2対の染色体は殆んど medianに近い submedian である。核型は次の式で表わされる。

$$K(2n) = 14 = 2A + 2B + 2C + 2D_1 + 2D_2 + 2E + 2F$$

Table 2. カスマグサの体細胞染色体の長さ

 $(10=1.2\mu)$

	染	色	体	長腕	短腕	計	着糸点
-	A	1,	2	30	20	50	sm
İ	В	3,	4	28	16	44	sm
	C	5,	6	22	20	42	sm
	$\mathbf{p_1}$	7,	8	24	16	40	sm
	$\overline{\mathrm{D_2}}$	9,	10	20	20	40	m
	E	11,	12	25	10	35	st
	F	13,	14	23	10	33	st

2. ZZYJZYFO V. hirsuta 2n=14

(Figs. 2, 7: Table 3)

体細胞染色体は14個あり、6種類に区別できる。染色体の大きさは最大 6μ から最小 4.8μ までで、大小の差が非常に少ない。染色体の着糸点は4対(1,2;3,4;7,8;9,10) が submedian に2対(5,6;11,12) が subterminal に、1対(13,14)は median にある。その中、最大の4個(1,2,3,4)の染色体はその大きさにおいて殆んど相違が認められない。7,8;9,10の2対の染色体は殆んど同じ大きさで median に近い submedian に着糸点を有する。核型は次の式で表わされる。

$$K(2n) = 14 = 4A + 2B + 2C + 2D + 2E_1 + 2E_2$$

Table 3. スズメノエンドウの体細胞染色体の長さ (10=1.2μ)

染	色	体	長腕	短腕	計	着糸点
A	1, 2,	3,4	30	20	50	sm
B	5,	6	35	12	47	st
C	7,	8	25	20	45	sm
D	9,	10	22	20	42	sm
E ₁	11,	12	30	10	40	st
E ₂	13,	14	20	20	40	m

B & B & F B B T W B & B 4111611111 01

Figs. 1-10 ソラマメ属の体細胞染色体 ×1800

Figs. 1, 6 カスマグサ Figs. 2, 7 スズメノエンドウ

Figs. 3, 8 クサフジ Figs. 4, 9 カラスノエンドウ

Figs. 5,10 ソラマメ

3. クサフジ V. Cracca 2n=14

(Figs. 3, 8; Table 4)

体細胞染色体は14個あり、7種類に区別できる。染色体の大きさは最大 4.8μ から最小 3.4μ までで、大小の差はあまり大きくない。染色体の着糸点は2対(1,2;9,10)は subterminal に他の5対(3,4;5,6;7,8;11,12;13,14)はすべて submedian にあり、median にあるものはなく、一般的にみて submedian にあるものも、すべて非常に subterminal に近いという特徴が観察された。核型は次の式で表わされる。

 $K(2n) = 14 = 2A_1 + 2A_2 + 2B + 2C + 2D + 2E + 2F$

Table 4. クサフジの体細胞染色体の長さ($10=1.2\mu$)

染	色	体	長腕	短腕	計	着糸点
A ₁ A ₂ B C D E F		2 4 6 8 10 12 14	30 25 22 20 22 20 18	10 15 15 15 10 10	40 40 37 35 32 30 28	st sm sm sm st st sm sm

4. カラスノエンドウ V. angustifolia L. var. seg_e^1 lalis 2n=12 (Figs. 4,9:Table 5)

体細胞染色体は12個あり、6種類に区別できる。染色体の大きさは最大 5.6μ ,最小 2.4μ で、大小の差がかなり大きい。染色体の着糸点はすべて subterminal にあり、最小の2対(9,10;11,12)の染色体の短腕は非常に短く、特に9,10の染色体の短腕は離れやすい特徴を持つていることが観察された。核型は次の式で表わされる。

$$K(2n) = 12 = 2A + 2B + 2C + 2D + 2E + 2F$$

Table 5. カラスノエンドウの体細胞染色体の長さ

 $(10=1.2\mu)$

染	色	体	長腕	短腕	計	着糸点
A B C D E F	1, 3, 5, 7, 9, 11,	2 4 6 8 10 12	35 30 30 25 20 15	12 12 6 10 5	47 42 36 35 25 20	st st st st st st

5. ソラマメ V. Faba 2n=12

(Figs. 5,10; Table 6)

体細胞染色体は12個あり、3種類に大別することができる。染色体の大きさは最大のものは19.2 μ ,最小のものは8.5 μ で、同属の他のものに比較して非常に巨大である。最大の1対(1.2)は二次のくびれを有し、特に大きく、 median に着糸点を有し、他の10個(3,4,5,6,7,8,9,10,11,12)はすべて subterminal に着糸点を有し、短腕は長腕に比して極めて小さい。そして最小の1対(11,12)を除いては、その大きさに始んど差異が認められない。核型は次の式で表わされる。

K(2n) = 12 = 2 A + 8B + 2C

Table 6. ソラマメの体細胞染色体の長さ($10=1.2\mu$)

染	色	体	長腕	短腕	計	着糸点
A	1,	2	80	50 + 30	160	m
В	3 —	10	70	8	78	st
С	11,	12	65	6	71	st
			1	<u> </u>		<u> </u>

考 察

以上の記載のように、ソラマメ属植物の染色体は6を基本数とするものと、7を基本数とするものとがあることが観察された。染色体の大きさについてみると、ソラマメの染色体は本属の他のものに比べて極端に大きく、かつ、核型もその趣きを著しく異にすることから、系統上かなり離れた種であることがわかる。他の4種の染色体は大体大きさが類似しており、特にカスマグサとスズメノエンドウとは核型が非常に類似し、両種が系統的に極めて近縁であると考えられる。しかし、カラスノエンドウは基本数が6で、核型も上の二種とは、かなり異つているところから、系統上やや離れた種であるものと考えられる。

(後記)終始、御懇切な御指導をいただいた神戸大学 の藤原悠紀雄助教授に厚く御礼申し上げる。

文 献

C. D. Darlington & A. P. Wyie. 1955. Chromosome Atlas of Flowering Plants. London.

酒井 文三 1951. 染色体 11:425

大井次三郎 1953. 日本植物誌、 至文堂

小鳥の飼い方

石原嘉寿巳•一色八郎 共著

方には本書は最適のもので各自おすすめしたい。

B 6 280円 六月社発行 (岡村はた)

学校などで見させる工夫的な飼い方が問題になる現 在、最も役に立つ教師の指導書である。

雞や小鳥の飼育数は多いいが学校環境としての飼い